BU-409: Charging Lithium-ion How to prolong battery life by using correct charge methods. Overview While some novel battery...
BU-409: Charging Lithium-ion
How to prolong battery life by using correct charge methods.Overview
While some novel battery technologies are under development in the lab, the Li-ion cell looks set to be the mainstay energy-storage medium for portable products for some time to come. As such, the technology will continue to be subject to intense development, addressing its drawbacks. Ion mobility is among these weaknesses and is likely to improve even compared to the latest generation of batteries – leading to faster charging under a constant current.
A Designer’s Guide to Fast Lithium Ion Battery Charging
Contributed By Digi-Key's North American Editors
2016-09-01
Lithium ion (Li-ion) batteries’ advantages have cemented their
position as the primary power source for portable electronics, despite
the one downside where designers have to limit the charging rate to
avoid damaging the cell and creating a hazard. Fortunately, today’s
Li-ion batteries are more robust and can be charged far more rapidly
using “fast charging” techniques.This article takes a closer look at Li-ion battery developments, the electrochemistry’s optimum charging cycle, and some fast-charging circuitry. The article will also explain the downsides of accelerating charging, allowing engineers to make an informed choice about their next charger design.
The concept behind lithium-ion (Li-ion) batteries is simple but it still took four decades of effort and a lot of research dollars to develop the technology that now reliably powers the majority of today’s portable products.
The earliest cells were fragile and prone to overheating during charging, but development has seen those drawbacks overcome. Nonetheless, recharging still needs to follow a precise regimen that limits charge currents to ensure full capacity is reached without overcharging with its associated risk of permanent damage. The good news is that recent developments in materials science and electrochemistry have increased the mobility of the cell’s ions. The greater mobility permits higher charge currents and speeds up the “constant current” part of the charging cycle.
These developments enable smartphones equipped with the latest generation of Li-ion batteries to be charged from around 20% to 70% capacity in 20 to 30 minutes. A brief battery refresh to three-quarter-capacity appeals to time-poor consumers, opening up a market sector for chargers that can safely support quick charging. Chip vendors have responded by offering designers ICs that facilitate various charging rates to accelerate battery replenishment for Li-ion cells. Faster charging is the result, but as always, there is a trade-off to be made.
Portable power enhancements
Li-ion cells are based on intercalation compounds. The compounds are materials with a layered crystalline structure that allow lithium ions to migrate from, or reside between, the layers. During discharge of a Li-ion battery, ions move from the negative electrode through an electrolyte to the positive electrode, causing electrons to move in the opposite direction around the circuit to power the load. Once the ions in the negative electrode are used up, current stops flowing. Charging the battery forces the ions to move back across the electrolyte and embed themselves in the negative electrode ready for the next discharge cycle (Figure 1).
Figure 1: In a Li-ion battery, lithium ions move from one intercalation compound to another while electrons flow around the circuit to power the load. (Image source: Digi-Key)
Today’s cells use lithium-based intercalation compounds, such as lithium cobalt oxide (LiCoO2), for the positive electrode, as it is much more stable than highly reactive pure lithium and so it is a lot safer. For the negative electrode, graphite (carbon) is used.
While these materials are satisfactory, things are not perfect. Each time the ions are shifted, some react with the electrode, become an intrinsic part of the material, and so are lost to the electrochemical reaction. As a result, the supply of free ions is gradually depleted and battery life diminishes. Worse yet, each charging cycle causes volumetric expansion of the electrodes. This stresses the crystalline structure and causes microscopic damage that diminishes the ability of the electrodes to accommodate free ions. This puts a limit on the number of recharge cycles.
Addressing these weaknesses has been the focus of recent Li-ion battery research, with a primary goal of packing more lithium ions into the electrodes to increase the energy density, defined as energy per unit volume or weight. This makes it easier for the ions to move in and out of the electrodes, and eases the passage of the ions through the electrolyte (i.e. enhancing ion mobility).
Charging time (for a given current) is ultimately determined by the battery’s capacity. For example, a 3300 mAhr smartphone battery will take approximately twice as long to charge as a 1600 mAhr battery, when both are charged using a current of 500 mA. To take account of this, engineers define charging rates in terms of “C”, where 1 C equals the maximum current the battery can supply for one hour. For example, in the case of a 2000 mAhr battery, C = 2 A. The same methodology applies to charging. Applying a charge current of 1 A to a 2000 mAhr battery equates to a rate of 0.5 C.
It would seem to follow, then, that increasing the charging current will decrease the recharge time. This is true, but only to a certain degree. Firstly, ions have a finite mobility, so increasing the charging current past a certain threshold doesn’t shift them any quicker. Instead, the energy is actually dissipated as heat, raising the battery’s internal temperature and risking permanent damage. Secondly, unrestricted charging at a high current eventually causes so many ions to embed into the negative electrode that the electrode disintegrates and the battery is ruined.
Recent developments have significantly improved the ion mobility of the latest Li-ion cells, allowing the use of a higher charging current without dangerously raising the internal temperature. But even in the most modern products there is still a risk in overcharging because it is a direct result of the physical make-up of the cell. Consequently, Li-ion battery makers prescribe a strict charging regimen to protect their products from damage.
Carefully does it
Li-ion battery charging follows a profile designed to ensure safety and long life without compromising performance (Figure 2). If a Li-ion battery is deeply discharged (for example, to below 3 V) a small “pre-conditioning” charge of around 10% of the full-charge current is applied. This prevents the cell from overheating until such a time that it is able to accept the full current of the constant-current phase. In reality, this phase is rarely needed because most modern mobile devices are designed to shut down while there’s still some charge left because deep discharge, like overcharging, can damage the cell.
Figure 2: Li-ion charging profile using constant-current method until battery voltage reaches 4.1 V, followed by ‘top-up’ using constant-voltage technique. (Image source: Texas Instruments)
Then, the battery is typically charged at a constant current of 0.5 C or less until the battery voltage reaches 4.1 or 4.2 V (depending on the exact electrochemistry). When the battery voltage reaches 4.1 or 4.2 V, the charger switches to a “constant voltage” phase to eliminate overcharging. Superior battery chargers manage the transition from constant current to constant voltage smoothly to ensure maximum capacity is reached without risking damage to the battery.
Maintaining a constant voltage gradually reduces the current until it reaches around 0.1 C, at which point charging is terminated. If the charger is left connected to the battery, a periodic ‘top up’ charge is applied to counteract battery self discharge. The top-up charge is typically initiated when the open-circuit voltage of the battery drops to less than 3.9 to 4 V, and terminates when the full-charge voltage of 4.1 to 4.2 V is again attained.
As mentioned, overcharging severely reduces battery life and is potentially dangerous. Once the ions are no longer moving, most of the electrical energy applied to the battery is converted to thermal energy. This causes overheating, potentially leading to an explosion due to outgassing of the electrolyte. As a result, battery makers advocate precise control and suitable charger safety features.
Undercharging, while not dangerous, can also have a detrimental effect on battery capacity. For example, undercharging by a little as 1% can reduce the battery capacity by around 8% (Figure 3).
Figure 3: Undercharging by just fractions of a percent can leave Li-ion battery capacity significantly reduced. For this reason, it is important that the final voltage during charging be precisely measured.
For these reasons, the charger should control the final voltage to within ±50 mV of 4.1 or 4.2 V and be able to detect when the battery is fully charged. Detection methods include determining when the current drops to 0.1 C during the constant-voltage stage and, in more basic chargers, charging for only a predetermined time and assuming the battery is fully charged. Many chargers also include facilities to determine the battery temperature, so that charging can cease if a threshold is exceeded. [1]
Accelerating charging
Because the latest generation of batteries feature higher ion mobility, faster charging without the risk of overheating is possible. Chip makers to date have provided a wide range of integrated solutions for Li-ion battery management to simplify the design of chargers. Now they also offer silicon that allows engineers to design products that take advantage of the faster charging during the constant-current phase. (Note that there is no industry-accepted definition of a “fast or quick charge” for a Li-ion battery. Rather the term is qualitatively applied to any charging regimen that accelerates charging compared to a “typical” 0.5 C charge rate.)
Maxim Integrated, for example, offers its MAX8900, a charger based on a switch-mode step-down (“buck”) power supply. The device can deliver up to 1.2 A from a 3.6 to 6.3 V supply while allowing the designer to adjust the charge parameters with external components.
For example, the designer can implement a constant-current fast charge once the battery voltage exceeds the pre-conditioning voltage and until the voltage reaches 4.2 V. the maximum fast charge current is determined by the resistor between the SETI pin and ground (See Figure 4).
Figure 4: The charging current in the constant-current phase of Li-ion battery charging delivered by the MAX8900 from Maxim Integrated can be set using the RSETI resistor shown here bottom center of this application circuit. (Diagram drawn using Digi-Key Scheme-it, based on an original image courtesy of Maxim Integrated)
For example, for RSETI = 2.87 kΩ, the fast charge current is 1.186 A and for RSETI = 34 kΩ, the current is 0.1 A. Figure 5 illustrates how the charging current varies with RSETI. Maxim offers a handy development kit for the MAX8900A that allows the designer to experiment with component values to explore their effects on not only the constant-current charging rate but also charging rates in other parts of the charging cycle.
Figure 5: Variation in charging current in the constant-current phase of Li-ion battery charging delivered by the MAX8900 with RSETI resistor value.
There are some safeguards built into the MAX8900 to ensure the battery temperature doesn’t rise dangerously during fast charging. These adhere to the Japan Electronics and Information Technology Industries Association (JEITA) specifications for the safe charging of Li-ion batteries. For Li-ion batteries at a temperature of between 0˚ and 15˚C, the fast-charge current is limited to 50% of its programmed rate, and if the battery temperature rises above 60˚C the current is cut altogether until the temperature drops to a safe level. The chip itself is protected by thermal foldback that limits the charge current to 25% of the maximum level if the internal temperature exceeds 85˚C.
Maxim is not alone in giving designers flexibility in the choice of fast charge rate. NXP Semiconductors’ MC32BC3770 switch-mode battery charger brings control to the charging regimen by enabling the designer to not only set the operational parameters via an I2C interface, but also set the charge-termination current, battery-regulation voltage, pre-charge current, fast-charge voltage threshold and charge-reduction threshold voltage, in addition to the fast-charge current.
The fast-charge current itself is programmable from 100 to 2000 mA, with a 500 mA default setting. For safety, the fast-charge current is always limited by the input current limit setting. The MC32BC3770 can operate from an input up to 20 V and features a single input for USB and a dual-path output to power up a device if the battery is completely discharged.
Fairchild Semiconductor’s FAN5400 also allows the designer to program the chip’s charging rates and operating modes via an I2C interface. The device is a USB-compliant battery charger based on a switching power supply that runs from a 6 V (max) input and offers up to 1.25 A charging current.
The FAN5400 is designed to minimize charging time while meeting USB compliance. The designer can select both the maximum charge current and the current threshold to terminate charging during the constant-voltage phase via an I2C host. Safety features include a timer which cuts the power should the charging cycle exceed a preset duration and charge current is limited if the chip’s temperature exceeds 120˚C.
For its part, Texas Instruments offers the bq25898, a switch-mode battery charge management device that supports high-input-voltage fast charging. The device can accept up to a 12 V input and produces up to a 4 A output, making it suitable for charging the larger capacity batteries in the latest generation of smartphones and tablets.
Similar to the NXP Semiconductors and Fairchild solutions, the bq25898 is configured via an I2C serial interface which allows the designer to set charge current and minimum system voltage. Safety features include battery temperature monitoring, charging timer and overvoltage protection.
Fast charging trade-off
The designer should be aware of the trade-off that comes with fast charging: the quicker the charge, the lower the capacity when the battery switches to the relatively slow constant-voltage part of the charging regime. For example, charging at 0.7 C results in a capacity of 50 to 70 percent when 4.1 or 4.2 V is reached, whereas charging at less than 0.2 C can result in a full battery as soon as the voltage reaches 4.1 or 4.2 V. In other words, if the consumer needs a quick refresh from, say, 25 to 50 percent, fast charging is ideal, but if the consumer habitually plugs in for a full recharge it is typically quicker to do this at a modest charge rate of 0.5 C than a 1 C-or-greater fast-charge rate which then necessitates a longer, relatively slow “top up”.
The other trade-off is that the raised internal temperature created by fast charging—even though it might be below the “safe” threshold determined by the manufacturer of a particular Li-ion cell—could cause slight damage, ultimately resulting in reduced capacity and fewer recharge cycles. That said, with improvements in battery technology increasing the robustness of cells, fast-charge rates would have to be extreme to reduce the battery’s life to less than the portable product’s “useful” existence (defined as the time between the consumer buying the product and replacing it with a newer model).
Charging and discharging batteries is a chemical reaction, but Li-ion is claimed to be the exception. Battery scientists talk about energies flowing in and out of the battery as part of ion movement between anode and cathode. This claim carries merits but if the scientists were totally right, then the battery would live forever. They blame capacity fade on ions getting trapped, but as with all battery systems, internal corrosion and other degenerative effects still play a role. (See BU-808b: What causes Li-ion to die?.)
The Li ion charger is a voltage-limiting device that has similarities to the lead acid system. The differences with Li-ion lie in a higher voltage per cell, tighter voltage tolerances and the absence of trickle or float charge at full charge. While lead acid offers some flexibility in terms of voltage cut off, manufacturers of Li-ion cells are very strict on the correct setting because Li-ion cannot accept overcharge. The so-called miracle charger that promises to prolong battery life and gain extra capacity with pulses and other gimmicks does not exist. Li-ion is a “clean” system and only takes what it can absorb.
Charging Cobalt-blended Li-ion
Li-ion with the traditional cathode materials of cobalt, nickel,
manganese and aluminum typically charge to 4.20V/cell. The tolerance is
+/–50mV/cell. Some nickel-based varieties charge to 4.10V/cell; high
capacity Li-ion may go to 4.30V/cell and higher. Boosting the voltage
increases capacity, but going beyond specification stresses the battery
and compromises safety. Protection circuits built into the pack do not allow exceeding the set voltage.Figure 1 shows the voltage and current signature as lithium-ion passes through the stages for constant current and topping charge. Full charge is reached when the current decreases to between 3 and 5 percent of the Ah rating.
Figure 1: Charge stages of lithium-ion. Li-ion is fully charged when the current drops to a set level. In lieu of trickle charge, some chargers apply a topping charge when the voltage drops. Courtesy of Cadex |
The advised charge rate of an Energy Cell is between 0.5C and 1C; the complete charge time is about 2–3 hours. Manufacturers of these cells recommend charging at 0.8C or less to prolong battery life. Most Power Cells can take a higher charger. Charge efficiency is about 99 percent and the cell remains cool during charge.
Some Li-ion packs may experience a temperature rise of about 5ºC (9ºF) when reaching full charge. This could be due to the protection circuit and/or elevated internal resistance. Discontinue using the battery or charger if the temperature rises more than 10ºC (18ºF) under moderate charging speeds.
Full charge occurs when the battery reaches the voltage threshold and the current drops to 3 percent of the rated current. A battery is also considered fully charged if the current levels off and cannot go down further. Elevated self-discharge might be the cause of this condition.
Increasing the charge current does not hasten the full-charge state by much. Although the battery reaches the voltage peak quicker, the saturation charge will take longer accordingly. With higher current, Stage 1 is shorter but the saturation during Stage 2 will take longer. A high current charge will, however, quickly fill the battery to about 70 percent.
Li-ion does not need to be fully charged as is the case with lead acid, nor is it desirable to do so. In fact, it is better not to fully charge because a high voltage stresses the battery. Choosing a lower voltage threshold or eliminating the saturation charge altogether, prolongs battery life but this reduces the runtime. Chargers for consumer products go for maximum capacity and cannot be adjusted; extended service life is perceived less important.
Some lower-cost consumer chargers may use the simplified “charge-and-run” method that charges a lithium-ion battery in one hour or less without going to the Stage 2 saturation charge. “Ready” appears when the battery reaches the voltage threshold at Stage 1. State-of-charge (SoC) at this point is about 85 percent, a level that may be sufficient for many users.
Certain industrial chargers set the charge voltage threshold lower on purpose to prolong battery life. Table 2 illustrates the estimated capacities when charged to different voltage thresholds with and without saturation charge. (See also BU-808: How to Prolong Lithium-based Batteries.)
Charge V/cell
|
Capacity at
cut-off voltage |
Charge time
|
Capacity with full saturation
|
3.80
3.90
4.00
4.10
4.20
|
60%
70%
75%
80%
85%
|
120 min
135 min
150 min
165 min
180 min
|
~65%
~75%
~80%
~90%
100%
|
When the battery is first put on charge, the voltage shoots up quickly. This behavior can be compared to lifting a weight with a rubber band, causing a lag. The capacity will eventually catch up when the battery is almost fully charged (Figure 3). This charge characteristic is typical of all batteries. The higher the charge current is, the larger the rubber-band effect will be. Cold temperatures or charging a cell with high internal resistance amplifies the effect.
Figure 3: Volts/capacity vs. time when charging lithium-ion. The capacity trails the charge voltage like lifting a heavy weight with a rubber band. Courtesy of Cadex |
Estimating SoC by reading the voltage of a charging battery is impractical; measuring the open circuit voltage (OCV) after the battery has rested for a few hours is a better indicator. As with all batteries, temperature affects the OCV, so does the active material of Li-ion. SoC of smartphones, laptops and other devices is estimated by coulomb counting. (See BU-903: How to Measure State-of-charge.)
Li-ion cannot absorb overcharge. When fully charged, the charge current must be cut off. A continuous trickle charge would cause plating of metallic lithium and compromise safety. To minimize stress, keep the lithium-ion battery at the peak cut-off as short as possible.
Once the charge is terminated, the battery voltage begins to drop. This eases the voltage stress. Over time, the open circuit voltage will settle to between 3.70V and 3.90V/cell. Note that a Li-ion battery that has received a fully saturated charge will keep the voltage elevated for a longer than one that has not received a saturation charge.
When lithium-ion batteries must be left in the charger for operational readiness, some chargers apply a brief topping charge to compensate for the small self-discharge the battery and its protective circuit consume. The charger may kick in when the open circuit voltage drops to 4.05V/cell and turn off again at 4.20V/cell. Chargers made for operational readiness, or standby mode, often let the battery voltage drop to 4.00V/cell and recharge to only 4.05V/cell instead of the full 4.20V/cell. This reduces voltage-related stress and prolongs battery life.
Some portable devices sit in a charge cradle in the ON position. The current drawn through the device is called the parasitic load and can distort the charge cycle. Battery manufacturers advise against parasitic loads while charging because they induce mini-cycles. This cannot always be avoided and a laptop connected to the AC main is such a case. The battery might be charged to 4.20V/cell and then discharged by the device. The stress level on the battery is high because the cycles occur at the high-voltage threshold, often also at elevated temperature.
A portable device should be turned off during charge. This allows the battery to reach the set voltage threshold and current saturation point unhindered. A parasitic load confuses the charger by depressing the battery voltage and preventing the current in the saturation stage to drop low enough by drawing a leakage current. A battery may be fully charged, but the prevailing conditions will prompt a continued charge, causing stress.
Charging Non-cobalt-blended Li-ion
While the traditional lithium-ion has a nominal cell voltage of 3.60V, Li-phosphate (LiFePO) makes an exception with a nominal cell voltage of 3.20V and charging to 3.65V. Relatively new is the Li-titanate (LTO) with a nominal cell voltage of 2.40V and charging to 2.85V. (See BU-205: Types of Lithium-ion.)Chargers for these non-cobalt-based Li-ions are not compatible with regular 3.60-volt Li-ion. Provision must be made to identify the systems and provide the correct voltage charging. A 3.60-volt lithium battery in a charger designed for Li-phosphate would not receive sufficient charge; a Li-phosphate in a regular charger would cause overcharge.
Overcharging Lithium-ion
Lithium-ion operates safely within the designated operating voltages; however, the battery becomes unstable if inadvertently charged to a higher than specified voltage. Prolonged charging above 4.30V on a Li-ion designed for 4.20V/cell will plate metallic lithium on the anode. The cathode material becomes an oxidizing agent, loses stability and produces carbon dioxide (CO2). The cell pressure rises and if the charge is allowed to continue, the current interrupt device (CID) responsible for cell safety disconnects at 1,000–1,380kPa (145–200psi). Should the pressure rise further, the safety membrane on some Li-ion bursts open at about 3,450kPa (500psi) and the cell might eventually vent with flame. (See BU-304b: Making Lithium-ion Safe.)Venting with flame is connected with elevated temperature. A fully charged battery has a lower thermal runaway temperature and will vent sooner than one that is partially charged. All lithium-based batteries are safer at a lower charge, and this is why authorities will mandate air shipment of Li-ion at 30 percent state-of-charge rather than at full charge. (See BU-704a: Shipping Lithium-based Batteries by Air.).
The threshold for Li-cobalt at full charge is 130–150ºC (266–302ºF); nickel-manganese-cobalt (NMC) is 170–180ºC (338–356ºF) and Li-manganese is about 250ºC (482ºF). Li-phosphate enjoys similar and better temperature stabilities than manganese. (See also BU-304a: Safety Concerns with Li-ion and BU-304b: Making Lithium-ion Safe.)
Lithium-ion is not the only battery that poses a safety hazard if overcharged. Lead- and nickel-based batteries are also known to melt down and cause fire if improperly handled. Properly designed charging equipment is paramount for all battery systems and temperature sensing is a reliable watchman.